Rapid protein release from Escherichia coli by chemical permeabilization under fermentation conditions.
نویسندگان
چکیده
Overall protein release greater than 75% in less than 1 h can be attained by exposing exponentially growing Escherichia coli cells to 0.4 M guanidine plus 0.5% Triton X-100 at 37 degrees C in medium. Cell growth stops immediately upon addition of the chemicals, but the cells are not lysed. Guanidine concentrations lower than 0.2 M, in conjunction with 0.5% Triton X-100, do not release significant intracellular protein, nor do they inhibit cell growth. Under these conditions, the cells undergo an adaptation that confers resistance to protein release by further treatment with guanidine and Triton X-100. Cells treated with 0.2 M guanidine plus 0.5% Triton X-100 display intermediate behavior. Protein release is approximately 35%, and growth is temporarily interrupted by an extended lag phase. Subsequent resumption of cell growth results in resistant cells and no additional protein release. This resistance is shown to be reversible and is most likely due to physiological adaptation rather than genetic mutation.
منابع مشابه
Recovery of a foreign protein from the periplasm of Escherichia coli by chemical permeabilization.
We have applied the technique of protein release by chemical permeabilization to recover a foreign protein in active form from the periplasm of a recombinant strain of Escherichia coli. The two agents used in our chemical permeabilization scheme, guanidine hydrochloride and Triton X-100, have different modes of action, allowing selectivity in protein release based on intracellular location unde...
متن کاملDetecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss
Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product l...
متن کاملPotent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes
The contribution of Escherichia coli hemolysin (ECH) to bacterial virulence has been considered mainly in context with its hemolytic properties. We here report that this prevalent bacterial cytolysin is the most potent leukocidin known to date. Very low concentrations (approximately 1 ng/ml) of ECH evoke membrane permeability defects in PMN (2-10 x 10(6) cells/ml) leading to an efflux of cellul...
متن کاملInteraction of Human Defensins with Escherichia coni Mechanism
Defensins are smalL cysteine-rich antimicrobial peptides that are abundant in human, rabbit, and guinea pig neutrophils (PMN). Three defensins (human neutrophil peptide defensin [HNP-1, HNP-2, and HNP-3) constitute between 30 and 50% of the total protein in azurophil granules of human PMN. We examined the mechanism of HNP-mediated bactericidal activity against Escherichia coli ML-35 (i-, y-, z+...
متن کاملThe Effect of Heat Shock on Production of Recombinant Human Interferon Alpha 2a (rhIFN α -2a) by Escherichia coli
Recombinant human interferon alpha 2a (rhIFN α -2a) production and cell growth were monitored in a set of genetically modified E. coli strains (MSD1519, MSD1520, MSD 1521, MSD 1522, MSD 1523) producing rhIFN α -2a. The growth was followed at OD 600 nm, changes in cell physiology were detected by pyrolysis mass spectrometry (PyMS) of cell biomass and recombinant protein production was determined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 39 7 شماره
صفحات -
تاریخ انتشار 1992